Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Microbiol Resour Announc ; : e0130023, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651926

RESUMO

The isolation and characterization of additional phages is crucial for adding reliable viral sequences with relevant biological information to viral databases. In this study, we present the complete genomes of two Arthrobacter phages obtained from different soil samples.

2.
Microbiol Resour Announc ; 13(4): e0122023, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38517186

RESUMO

In the present work, we present the draft genome sequence of a new putative Arthrobacter species associated with the tomato rhizosphere.

3.
Sci Total Environ ; 871: 162137, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36775167

RESUMO

The dispersion of microorganisms through the atmosphere is a continual and essential process that underpins biogeography and ecosystem development and function. Despite the ubiquity of atmospheric microorganisms globally, specific knowledge of the determinants of atmospheric microbial diversity at any given location remains unresolved. Here we describe bacterial diversity in the atmospheric boundary layer and underlying soil at twelve globally distributed locations encompassing all major biomes, and characterise the contribution of local and distant soils to the observed atmospheric community. Across biomes the diversity of bacteria in the atmosphere was negatively correlated with mean annual precipitation but positively correlated to mean annual temperature. We identified distinct non-randomly assembled atmosphere and soil communities from each location, and some broad trends persisted across biomes including the enrichment of desiccation and UV tolerant taxa in the atmospheric community. Source tracking revealed that local soils were more influential than distant soil sources in determining observed diversity in the atmosphere, with more emissive semi-arid and arid biomes contributing most to signatures from distant soil. Our findings highlight complexities in the atmospheric microbiota that are relevant to understanding regional and global ecosystem connectivity.


Assuntos
Ecossistema , Microbiota , Solo , Bactérias , Atmosfera , Temperatura , Microbiologia do Solo
4.
J Gen Virol ; 103(10)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36260063

RESUMO

The application of CRISPR/Cas9 to improve genome engineering efficiency for large dsDNA viruses has been extensively described, but a robust and versatile method for high-throughput generation of marker-free recombinants for a desired locus has not yet been reported. Cytoplasmic-replicating viruses use their own repair enzymes for homologous recombination, while nuclear-replicating viruses use the host repair machinery. This is translated into a wide range of Cas9-induced homologous recombination efficiencies, depending on the virus replication compartment and viral/host repair machinery characteristics and accessibility. However, the use of Cas9 as a selection agent to target parental virus genomes robustly improves the selection of desired recombinants across large dsDNA viruses. We used ectromelia virus (ECTV) and herpes simplex virus (HSV) type 1 and 2 to optimize a CRISPR/Cas9 method that can be used versatilely for efficient genome editing and selection of both cytoplasmic- and nuclear-replicating viruses. We performed a genome-wide genetic variant analysis of mutations located at predicted off-target sequences for 20 different recombinants, showing off-target-free accuracy by deep sequencing. Our results support this optimized method as an efficient, accurate and versatile approach to enhance the two critical factors of high-throughput viral genome engineering: generation and colour-based selection of recombinants. This application of CRISPR/Cas9 reduces the time and labour for screening of desired recombinants, allowing for high-throughput generation of large collections of mutant dsDNA viruses for a desired locus, optimally in less than 2 weeks.


Assuntos
Herpesvirus Humano 1 , Vírus , Sistemas CRISPR-Cas , Edição de Genes/métodos , Genoma Viral , Herpesvirus Humano 1/genética , Vírus/genética
5.
Mol Ther Nucleic Acids ; 29: 769-786, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36159592

RESUMO

Satellite cells (SCs), muscle stem cells, display functional heterogeneity, and dramatic changes linked to their regenerative capabilities are associated with muscle-wasting diseases. SC behavior is related to endogenous expression of the myogenic transcription factor MYF5 and the propensity to enter into the cell cycle. Here, we report a role for miR-106b reinforcing MYF5 inhibition and blocking cell proliferation in a subset of highly quiescent SC population. miR-106b down-regulation occurs during SC activation and is required for proper muscle repair. In addition, miR-106b is increased in dystrophic mice, and intramuscular injection of antimiR in injured mdx mice enhances muscle regeneration promoting transcriptional changes involved in skeletal muscle differentiation. miR-106b inhibition promotes the engraftment of human muscle stem cells. Furthermore, miR-106b is also high in human dystrophic muscle stem cells and its inhibition improves intrinsic proliferative defects and increases their myogenic potential. This study demonstrates that miR-106b is an important modulator of SC quiescence, and that miR-106b may be a new target to develop therapeutic strategies to promote muscle regeneration improving the regenerative capabilities of injured dystrophic muscle.

6.
Genes (Basel) ; 12(9)2021 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-34573340

RESUMO

Leishmania major is the main causative agent of cutaneous leishmaniasis in humans. The Friedlin strain of this species (LmjF) was chosen when a multi-laboratory consortium undertook the objective of deciphering the first genome sequence for a parasite of the genus Leishmania. The objective was successfully attained in 2005, and this represented a milestone for Leishmania molecular biology studies around the world. Although the LmjF genome sequence was done following a shotgun strategy and using classical Sanger sequencing, the results were excellent, and this genome assembly served as the reference for subsequent genome assemblies in other Leishmania species. Here, we present a new assembly for the genome of this strain (named LMJFC for clarity), generated by the combination of two high throughput sequencing platforms, Illumina short-read sequencing and PacBio Single Molecular Real-Time (SMRT) sequencing, which provides long-read sequences. Apart from resolving uncertain nucleotide positions, several genomic regions were reorganized and a more precise composition of tandemly repeated gene loci was attained. Additionally, the genome annotation was improved by adding 542 genes and more accurate coding-sequences defined for around two hundred genes, based on the transcriptome delimitation also carried out in this work. As a result, we are providing gene models (including untranslated regions and introns) for 11,238 genes. Genomic information ultimately determines the biology of every organism; therefore, our understanding of molecular mechanisms will depend on the availability of precise genome sequences and accurate gene annotations. In this regard, this work is providing an improved genome sequence and updated transcriptome annotations for the reference L. major Friedlin strain.


Assuntos
Genoma de Protozoário/genética , Leishmania major/genética , Cromossomos/genética , Genes de Protozoários , Íntrons , Anotação de Sequência Molecular , Análise de Sequência de DNA/métodos , Sintenia , Transcriptoma
7.
PLoS Pathog ; 17(8): e1009541, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34437654

RESUMO

Herpes simplex virus type 1 and 2 (HSV-1 and HSV-2, respectively) are prevalent human pathogens of clinical relevance that establish long-life latency in the nervous system. They have been considered, along with the Herpesviridae family, to exhibit a low level of genetic diversity during viral replication. However, the high ability shown by these viruses to rapidly evolve under different selective pressures does not correlates with that presumed genetic stability. High-throughput sequencing has revealed that heterogeneous or plaque-purified populations of both serotypes contain a broad range of genetic diversity, in terms of number and frequency of minor genetic variants, both in vivo and in vitro. This is reminiscent of the quasispecies phenomenon traditionally associated with RNA viruses. Here, by plaque-purification of two selected viral clones of each viral subtype, we reduced the high level of genetic variability found in the original viral stocks, to more genetically homogeneous populations. After having deeply characterized the genetic diversity present in the purified viral clones as a high confidence baseline, we examined the generation of de novo genetic diversity under culture conditions. We found that both serotypes gradually increased the number of de novo minor variants, as well as their frequency, in two different cell types after just five and ten passages. Remarkably, HSV-2 populations displayed a much higher raise of nonconservative de novo minor variants than the HSV-1 counterparts. Most of these minor variants exhibited a very low frequency in the population, increasing their frequency over sequential passages. These new appeared minor variants largely impacted the coding diversity of HSV-2, and we found some genes more prone to harbor higher variability. These data show that herpesviruses generate de novo genetic diversity differentially under equal in vitro culture conditions. This might have contributed to the evolutionary divergence of HSV-1 and HSV-2 adapting to different anatomical niche, boosted by selective pressures found at each epithelial and neuronal tissue.


Assuntos
Evolução Biológica , Variação Genética , Herpes Simples/virologia , Herpesvirus Humano 1/genética , Herpesvirus Humano 2/genética , Queratinócitos/virologia , Replicação Viral , Genoma Viral , Herpes Simples/genética , Herpes Simples/metabolismo , Humanos , Queratinócitos/metabolismo , Ativação Viral , Latência Viral
8.
Acta Trop ; 222: 106053, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34273311

RESUMO

All trypanosomatid genomes are colonized by non-LTR retrotransposons which exhibit a highly conserved 77-nt sequence at their 5' ends, known as the Pr77-hallmark (Pr77). The wide distribution of Pr77 is expected to be related to the gene regulation processes in these organisms as it has promoter and HDV-like ribozyme activities at the DNA and RNA levels, respectively. The identification of Pr77 hallmark-bearing retrotransposons and the study of the associations of mobile elements with relevant genes have been analyzed in the genomes of six strains of Trypanosoma cruzi belonging to different discrete typing units (DTUs) and with different geographical origins and host/vectors. The genomes have been sequenced, assembled and annotated. BUSCO analyses indicated a good quality for the assemblies that were used in comparative analyses. The results show differences among the six genomes in the copy number of genes related to virulence processes, the abundance of retrotransposons bearing the Pr77 sequence and the presence of the Pr77 hallmarks not associated with retroelements. The analyses also show frequent associations of Pr77-bearing retrotransposons and single Pr77 hallmarks with genes coding for trans-sialidases, RHS, MASP or hypothetical proteins, showing variable proportion depending on the type of retroelement, gene class and parasite strain. These differences in the genomic distribution of active retroelements and other Pr77-containing elements have shaped the genome architecture of these six strains and might be contributing to the phenotypic variability existing among them.


Assuntos
Retroelementos , Trypanosoma cruzi , Regulação da Expressão Gênica , Genoma de Protozoário , Regiões Promotoras Genéticas , Retroelementos/genética , Trypanosoma cruzi/genética
9.
Microb Genom ; 7(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34170814

RESUMO

Herpes simplex virus serotype 2 (HSV-2) is a ubiquitous human pathogen that causes recurrent genital infections and ulcerations. Many HSV-2 strains with different biological properties have been identified, but only the genomes of HSV-2 strains HG52, SD90e and 333 have been reported as complete and fully characterized sequences. We de novo assembled, annotated and manually curated the complete genome sequence of HSV-2 strain MS, a highly neurovirulent strain, originally isolated from a multiple sclerosis patient. We resolved both DNA ends, as well as the complex inverted repeats regions present in HSV genomes, usually undisclosed in previous published partial herpesvirus genomes, using long reads from Pacific Biosciences (PacBio) technology. Additionally, we identified isomeric genomes by determining the alternative relative orientation of unique fragments in the genome of the sequenced viral population. Illumina short-read sequencing was crucial to examine genetic variability, such as nucleotide polymorphisms, insertion/deletions and sequence determinants of strain-specific virulence factors. We used Illumina data to fix two disrupted open reading frames found in coding homopolymers after PacBio assembly. These results support the combination of long- and short-read sequencing technologies as a precise and effective approach for the accurate de novo assembly and curation of complex microbial genomes.


Assuntos
Genoma Viral , Herpesvirus Humano 2/genética , Animais , Chlorocebus aethiops , Herpesvirus Humano 2/classificação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Fases de Leitura Aberta , Filogenia , Análise de Sequência de DNA/métodos , Células Vero , Montagem de Vírus , Sequenciamento Completo do Genoma
10.
PLoS Negl Trop Dis ; 14(12): e0009004, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33370288

RESUMO

A detailed understanding of the mechanisms underlying the capacity of a virus to break the species barrier is crucial for pathogen surveillance and control. New World (NW) mammarenaviruses constitute a diverse group of rodent-borne pathogens that includes several causative agents of severe viral hemorrhagic fever in humans. The ability of the NW mammarenaviral attachment glycoprotein (GP) to utilize human transferrin receptor 1 (hTfR1) as a primary entry receptor plays a key role in dictating zoonotic potential. The recent isolation of Tacaribe and lymphocytic choriominingitis mammarenaviruses from host-seeking ticks provided evidence for the presence of mammarenaviruses in arthropods, which are established vectors for numerous other viral pathogens. Here, using next generation sequencing to search for other mammarenaviruses in ticks, we identified a novel replication-competent strain of the NW mammarenavirus Tamiami (TAMV-FL), which we found capable of utilizing hTfR1 to enter mammalian cells. During isolation through serial passaging in mammalian immunocompetent cells, the quasispecies of TAMV-FL acquired and enriched mutations leading to the amino acid changes N151K and D156N, within GP. Cell entry studies revealed that both substitutions, N151K and D156N, increased dependence of the virus on hTfR1 and binding to heparan sulfate proteoglycans. Moreover, we show that the substituted residues likely map to the sterically constrained trimeric axis of GP, and facilitate viral fusion at a lower pH, resulting in viral egress from later endosomal compartments. In summary, we identify and characterize a naturally occurring TAMV strain (TAMV-FL) within ticks that is able to utilize hTfR1. The TAMV-FL significantly diverged from previous TAMV isolates, demonstrating that TAMV quasispecies exhibit striking genetic plasticity that may facilitate zoonotic spillover and rapid adaptation to new hosts.


Assuntos
Antígenos CD/metabolismo , Infecções por Arenaviridae/transmissão , Arenaviridae/genética , Receptores da Transferrina/metabolismo , Receptores Virais/metabolismo , Proteínas do Envelope Viral/genética , Sequência de Aminoácidos/genética , Animais , Arenaviridae/isolamento & purificação , Arenavirus do Novo Mundo , Linhagem Celular , Chlorocebus aethiops , Células HEK293 , Humanos , Insetos Vetores/virologia , Alinhamento de Sequência , Carrapatos/virologia , Células Vero , Envelope Viral/metabolismo , Zoonoses/transmissão , Zoonoses/virologia
11.
Genes (Basel) ; 11(9)2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32887454

RESUMO

Leishmania infantum causes visceral leishmaniasis (kala-azar), the most severe form of leishmaniasis, which is lethal if untreated. A few years ago, the re-sequencing and de novo assembling of the L. infantum (JPCM5 strain) genome was accomplished, and now we aimed to describe and characterize the experimental proteome of this species. In this work, we performed a proteomic analysis from axenic cultured promastigotes and carried out a detailed comparison with other Leishmania experimental proteomes published to date. We identified 2352 proteins based on a search of mass spectrometry data against a database built from the six-frame translated genome sequence of L. infantum. We detected many proteins belonging to organelles such as glycosomes, mitochondria, or flagellum, as well as many metabolic enzymes and many putative RNA binding proteins and molecular chaperones. Moreover, we listed some proteins presenting post-translational modifications, such as phosphorylations, acetylations, and methylations. On the other hand, the identification of peptides mapping to genomic regions previously annotated as non-coding allowed for the correction of annotations, leading to the N-terminal extension of protein sequences and the uncovering of eight novel protein-coding genes. The alliance of proteomics, genomics, and transcriptomics has resulted in a powerful combination for improving the annotation of the L. infantum reference genome.


Assuntos
Leishmania infantum/genética , Leishmania infantum/metabolismo , Proteoma/genética , Proteoma/metabolismo , Sequência de Aminoácidos , Biologia Computacional/métodos , Genômica/métodos , Leishmaniose Visceral/genética , Leishmaniose Visceral/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Anotação de Sequência Molecular/métodos , Peptídeos/genética , Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional/genética , Proteômica/métodos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Espectrometria de Massas em Tandem/métodos
12.
Microbiol Resour Announc ; 9(27)2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32616633

RESUMO

Trypanosoma cruzi shows a genetic diversity that has been associated with the variability of clinical manifestations, geographical distribution, and preferential parasite-vector interactions. In an effort to better understand this genetic variability, here, the draft genome of T. cruzi strain Ikiakarora (discrete typing unit TcIII), which has been associated with the sylvatic cycle, is reported.

13.
J Virol ; 94(20)2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32669337

RESUMO

During primary infection, herpes simplex virus 2 (HSV-2) replicates in epithelial cells and enters neurites to infect neurons of the peripheral nervous system. Growth factors and attractive and repulsive directional cues influence neurite outgrowth and neuronal survival. We hypothesized that HSV-2 modulates the activity of such cues to increase neurite outgrowth. To test this hypothesis, we exposed sensory neurons to nerve growth factor (NGF) and mock- or HSV-2-infected HEK-293T cells, since they express repellents of neurite outgrowth. We show that HEK-293T cells secrete factors that inhibit neurite outgrowth, while infection with HSV-2 strains MS and 333 reduces this repelling phenotype, increasing neurite numbers. The HSV-2-mediated restoration of neurite outgrowth required the activity of NGF. In the absence of infection, however, NGF did not overcome the repulsion mediated by HEK-293T cells. We previously showed that recombinant, soluble glycoprotein G of HSV-2 (rSgG2) binds and enhances NGF activity, increasing neurite outgrowth. However, the effect of gG2 during infection has not been investigated. Therefore, we addressed whether gG2 contributes to overcoming neurite outgrowth repulsion. To do so, we generated viruses lacking gG2 expression and complemented them by exogenous expression of gG2. Overall, our results suggest that HSV-2 infection of nonneuronal cells reduces their repelling effect on neurite outgrowth in an NGF-dependent manner. gG2 contributed to this phenotype, but it was not the only factor. The enhanced neurite outgrowth may facilitate HSV-2 spread from epithelial cells into neurons expressing NGF receptors and increase HSV-2-mediated pathogenesis.IMPORTANCE Herpes simplex virus 2 (HSV-2) is a prevalent human pathogen that establishes lifelong latency in neurons of the peripheral nervous system. Colonization of neurons is required for HSV-2 persistence and pathogenesis. The viral and cellular factors required for efficient infection of neurons are not fully understood. We show here that nonneuronal cells repel neurite outgrowth of sensory neurons, while HSV-2 infection overcomes this inhibition and, rather, stimulates neurite outgrowth. HSV-2 glycoprotein G and nerve growth factor contribute to this phenotype, which may attract neurites to sites of infection and facilitate virus spread to neurons. Understanding the mechanisms that modulate neurite outgrowth and facilitate HSV-2 infection of neurons might foster the development of therapeutics to reduce HSV-2 colonization of the nervous system and provide insights on neurite outgrowth and regeneration.


Assuntos
Herpes Genital/metabolismo , Herpesvirus Humano 2/metabolismo , Fator de Crescimento Neural/metabolismo , Neuritos , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Células HEK293 , Herpesvirus Humano 2/patogenicidade , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Neuritos/metabolismo , Neuritos/virologia , Células Vero
14.
Microbiol Resour Announc ; 9(18)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32354964

RESUMO

Trypanosoma cruzi parasite strains are classified into six lineages (discrete typing units TcI to TcVI). The broad genetic diversity of T. cruzi strains has an influence on the development of the host response and pathogenesis, as well as drug susceptibility. Here, the draft genome of the T. cruzi B. M. López strain (TcIa) is reported.

15.
Sci Rep ; 9(1): 17376, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31758058

RESUMO

The genomic sequence of Trypanosoma cruzi, the protozoan causative of Chagas disease was published more than a decade ago. However, due to their complexity, its complete haploid predicted sequence and therefore its genetic repertoire remains unconfirmed. In this work, we have used RNAseq data to improve the previous genome assembly of Sylvio X10 strain and to define the complete transcriptome at trypomastigote stage (mammalian stage). A total of 22,977 transcripts were identified, of which more than half could be considered novel as they did not match previously annotated genes. Moreover, for the first time in T. cruzi, we are providing their relative abundance levels. We have identified that Sylvio X10 trypomastigotes exhibit a predominance of surface protein genes, specifically those encoding trans-sialidase and mucin-like proteins. On the other hand, detailed analysis of the pre-mRNA processing sites revealed some similarities but also some differences in the spliced leader and different polyadenylation addition sites compared to close related kinetoplastid parasites. Our results also confirm that transcription is bidirectional as occur in other kinetoplastids and the proportion of forward-sense and reverse-sense transcripts is almost equivalent, demonstrating that a strand-specificity does not exist.


Assuntos
Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , Transcriptoma/fisiologia , Trypanosoma cruzi/genética , Sequência de Bases , Mapeamento Cromossômico , Perfilação da Expressão Gênica , Genoma de Protozoário/genética , Glicoproteínas/genética , Mucinas/genética , Neuraminidase/genética , Poliadenilação/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Processamento Pós-Transcricional do RNA/genética , RNA Mensageiro/análise , RNA Mensageiro/genética , Análise de Sequência de DNA , Trypanosoma cruzi/metabolismo , Glicoproteínas Variantes de Superfície de Trypanosoma/genética , Glicoproteínas Variantes de Superfície de Trypanosoma/metabolismo
16.
Genes (Basel) ; 10(10)2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31561572

RESUMO

The mitochondrial DNA (mtDNA), which is present in almost all eukaryotic organisms, is a useful marker for phylogenetic studies due to its relative high conservation and its inheritance manner. In Leishmania and other trypanosomatids, the mtDNA (also referred to as kinetoplast DNA or kDNA) is composed of thousands of minicircles and a few maxicircles, catenated together into a complex network. Maxicircles are functionally similar to other eukaryotic mtDNAs, whereas minicircles are involved in RNA editing of some maxicircle-encoded transcripts. Next-generation sequencing (NGS) is increasingly used for assembling nuclear genomes and, currently, a large number of genomic sequences are available. However, most of the time, the mitochondrial genome is ignored in the genome assembly processes. The aim of this study was to develop a pipeline to assemble Leishmania minicircles and maxicircle DNA molecules, exploiting the raw data generated in the NGS projects. As a result, the maxicircle molecules and the plethora of minicircle classes for Leishmania major, Leishmania infantum and Leishmania braziliensis have been characterized. We have observed that whereas the heterogeneity of minicircle sequences existing in a single cell hampers their use for Leishmania typing and classification, maxicircles emerge as an extremely robust genetic marker for taxonomic studies within the clade of kinetoplastids.


Assuntos
DNA de Cinetoplasto/genética , Genoma Mitocondrial , Genoma de Protozoário , Leishmania/genética , Leishmania/classificação , Filogenia
17.
Sci Rep ; 9(1): 6919, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-31061406

RESUMO

Besides their medical relevance, Leishmania is an adequate model for studying post-transcriptional mechanisms of gene expression. In this microorganism, mRNA degradation/stabilization mechanisms together with translational control and post-translational modifications of proteins are the major drivers of gene expression. Leishmania parasites develop as promastigotes in sandflies and as amastigotes in mammalians, and during host transmission, the parasite experiences a sudden temperature increase. Here, changes in the transcriptome of Leishmania major promastigotes after a moderate heat shock were analysed by RNA-seq. Several of the up-regulated transcripts code for heat shock proteins, other for proteins previously reported to be amastigote-specific and many for hypothetical proteins. Many of the transcripts experiencing a decrease in their steady-state levels code for transporters, proteins involved in RNA metabolism or translational factors. In addition, putative long noncoding RNAs were identified among the differentially expressed transcripts. Finally, temperature-dependent changes in the selection of the spliced leader addition sites were inferred from the RNA-seq data, and particular cases were further validated by RT-PCR and Northern blotting. This study provides new insights into the post-transcriptional mechanisms by which Leishmania modulate gene expression.


Assuntos
Perfilação da Expressão Gênica , Resposta ao Choque Térmico/genética , Leishmania major/genética , Leishmania major/fisiologia , RNA-Seq , Processamento Alternativo , Regulação para Baixo , Fases de Leitura Aberta/genética , RNA Mensageiro/genética
18.
Sci Rep ; 9(1): 6127, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30992521

RESUMO

Leishmania donovani is a unicellular parasite that causes visceral leishmaniasis, a fatal disease in humans. In this study, a complete assembly of the genome of L. donovani is provided. Apart from being the first published genome of this strain (HU3), this constitutes the best assembly for an L. donovani genome attained to date. The use of a combination of sequencing platforms enabled to assemble, without any sequence gap, the 36 chromosomes for this species. Additionally, based on this assembly and using RNA-seq reads derived from poly-A + RNA, the transcriptome for this species, not yet available, was delineated. Alternative SL addition sites and heterogeneity in the poly-A addition sites were commonly observed for most of the genes. After a complete annotation of the transcriptome, 2,410 novel transcripts were defined. Additionally, the relative expression for all transcripts present in the promastigote stage was determined. Events of cis-splicing have been documented to occur during the maturation of the transcripts derived from genes LDHU3_07.0430 and LDHU3_29.3990. The complete genome assembly and the availability of the gene models (including annotation of untranslated regions) are important pieces to understand how differential gene expression occurs in this pathogen, and to decipher phenotypic peculiarities like tissue tropism, clinical disease, and drug susceptibility.


Assuntos
Cromossomos/genética , Genoma de Protozoário/genética , Leishmania donovani/genética , Transcriptoma/genética , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Resistência Microbiana a Medicamentos/genética , Humanos , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/parasitologia , Anotação de Sequência Molecular , RNA-Seq
19.
Mem. Inst. Oswaldo Cruz ; 114: e180438, 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1040619

RESUMO

Leishmania braziliensis is the etiological agent of American mucosal leishmaniasis, one of the most severe clinical forms of leishmaniasis. Here, we report the assembly of the L. braziliensis (M2904) genome into 35 continuous chromosomes. Also, the annotation of 8395 genes is provided. The public availability of this information will contribute to a better knowledge of this pathogen and help in the search for vaccines and novel drug targets aimed to control the disease caused by this Leishmania species.


Assuntos
Leishmania braziliensis/genética , DNA de Protozoário/genética , Análise de Sequência de DNA
20.
Artigo em Inglês | MEDLINE | ID: mdl-30533931

RESUMO

Herpes simplex virus 2, or human herpesvirus 2, is a ubiquitous human pathogen that causes genital ulcerations and establishes latency in sacral root ganglia. We fully sequenced and manually curated the viral genome sequence of herpes simplex virus 2, strain 333 using Pacific Biosciences and Illumina sequencing technologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...